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Abstract

The purpose of this article is to demonstrate the application of an iterative probabilistic neural network (PNN) as a
classification tool in the analysis of multicomponent environmental samples of Aroclors. The PNN is a neural network
implementation of a Bayes classifier. This network is incorporated into an iterative method for classifying Aroclor samples.
The performance of the method is demonstrated using experimental gas chromatograms of Aroclors, Aroclor mixtures, and
random noise. This technique is compared with standard chromatography data processing procedures and linear regression
pattern recognition and found to be more accurate and more sensitive for component identification. The method is
appropriate for use in routine environmental screening applications in which the presence or absence of one or more Aroclors

must be determined in the presence of interfering signals.
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1. Introduction

Aroclor is the trade name given to complex
mixtures of polychlorinated biphenyls (PCBs) that
were manufactured in the USA by Monsanto be-
tween 1929 and 1978. Aroclors are complex mix-
tures of chlorinated biphenyls because each of the 10
positions on the biphenyl molecule may be substi-
tuted with either chlorine or hydrogen. Theoretically,
209 different chlorinated biphenyls are possible.
Typically, 30 to 50 of the 209 possible congeners are
major components of each Aroclor. The various
Aroclors produced differ in the mixture of con-
geners. Most Aroclors are given a numerical des-
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ignation beginning with 12, denoting the 12 carbon
biphenyl ring, and ending with two digits expressing
the percentage by weight of chlorine in the Aroclor
product. Thus, 42% of the average molecular mass of
the PCBs in Aroclor 1242 is chlorine and the mixture
averages 3.2 chlorine atoms per molecule. Aroclors
1254 and 1260 average approximately five and six
chlorine atoms per biphenyl, respectively.

The relative abundance of the chlorinated bi-
phenyls in an Aroclor mixture give rise to a unique
signature (fingerprint) of peak areas and retention
times (peak profile) in the chromatogram of a sample
of that Aroclor. Classifying the Aroclor present in an
environmental sample from this fingerprint chro-
matographic peak profile poses a number of chal-
lenges. Fingerprint identification is complicated by
sample contamination which causes elevated
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baselines and interference with individual chlorinated
biphenyl peaks by co-eluting compounds in the
sample. Sample classification is also impeded by
Aroclor weathering, which changes the relative
abundance of the chlorinated biphenyls in the mix-
ture and so distorts the characteristic fingerprint.

Classifying each Aroclor in environmental sam-
ples contaminated with multiple Aroclors is a more
difficult problem than identifying a single Aroclor
contaminant. Because Aroclor mixtures contain
many of the same chlorinated biphenyl congeners,
the areas of the peaks from these components cannot
be uniquely assigned to any Aroclor. Identification of
each component becomes particularly difficult when
there is a large (five-fold or more) difference in the
concentrations of each Aroclor.

Currently, the manual analysis of environmental
Aroclor samples is carried out with a two-step
process involving the initial subjective identification
of the sample from its chromatographic peak profile
followed by the quantization of the Aroclors using
the area of isolated, characteristic peaks [1]. This
manual process depends on the skill and experience
of the analyst, and results are highly variable and
error prone [2]. Pattern recognition analytical tech-
niques have the potential to facilitate routine en-
vironmental analyses for multicomponent target ma-
terials like Aroclor samples by identifying the finger-
prints of the target materials with less subjectivity.
Furthermore, automating the multicomponent identi-
fication in the data interpretation process requires
pattern recognition methods that emulate the intuitive
analyses performed by experienced technicians [3].

Pattern recognition analysis of chromatograms is
an effective tool in the analysis of complex bio-
logical and environmental samples. Typical pattern
recognition applications in chromatographic data
interpretation involve sample classification problems.
Multivariate analysis techniques have been used to
chromatographically classify fuel samples [4-6], fish
oils [7], essential oils [8,9], orange juice [10], and
whiskeys [11], to name only a few applications. In
these applications, the empirical relationships in a
data set of chromatograms from samples of known
classification (a training set) are determined with
either an unsupervised learning or a supervised
learning process. The identified relationships are then
used to classify an unknown sample as a member of

one or more of the groups identified in the initial
chromatogram training set. In these applications,
experimental and systematic variations between the
training data set and the unknown sample must be
avoided to minimize confounding of the desired
grouping information.

To be a useful tool in routine environmental
testing of Aroclors, pattern recognition applications
must work within the restrictions of available data
and expected distortions. One restriction is that in the
environmental analysis for Aroclor contamination,
the assumption that the unknown sample can be
classified as a member of a single group in the
training data cannot be made. This assumption,
however, is implicit in many chromatography pattern
recognition applications that seek to identify the
origin of a sample [5,7-9]. In routine environmental
analysis, Aroclors can be absent from the sample or
the sample can contain several Aroclors. In the case
that the Aroclor is not present in the sample, the
absence must be determined unambiguously by the
pattern recognition application. In the case of multi-
ple Aroclors, the fingerprint from each Aroclor in the
gas chromatogram must be recognized and the
sample must be classified accordingly. Statistical
discriminant analysis methods and principal com-
ponent analysis methods have been developed to
recognize individual multicomponent target materials
in a mixture of multiple targets [4,12,13]. These
methods, by design, categorize the sample as a
member of one or more target groups, relying on
error estimates in the results to identify erroneous
classifications when the target material is not present
in the sample.

A second difficulty in the use of pattern recogni-
tion for routine environmental screening analyses is
the need for an extensive training data set from
which the classification relationships are determined
[2]. Obtaining a large training set each time an
instrument is calibrated is a time-consuming process
that is not feasible for routine use in environmental
testing laboratories, in which the cost per unknown
analysis is of primary concern. From a practicality
standpoint, pattern recognition methods must be
trainable using no more than the standard single-
component calibration data sets [1].

We have developed an iterative PNN pattern
recognition method within these restrictions that is
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amenable to routine use in environmental testing of
Aroclor samples. The method is designed for screen-
ing analyses of unknown samples containing none,
one, or multiple target groups (demonstrated in this
work with up to three different Aroclors) in the
presence of a chromatographic response from en-
vironmental background. The technique uses as its
training data set only the standard single-component
chromatograms collected in the process of building
calibration curves for conventional, manual analysis.

The purpose of this paper is to demonstrate the use
of the iterative PNN as a tool for the classification of
chromatographic Aroclor data. We show that the
method effectively identifies Aroclors and Aroclor
mixtures in environmental samples in the presence of
peak overlap, missing peaks, and minor contami-
nants. The PNN method performance on weathered
Aroclor samples is not addressed in this work.

The PNN architecture is distinct from the standard
back-propagation neural network architecture and
typically provides superior performance in classifica-
tion applications [5,14,15]. A description of prob-
abilistic neural networks is given in the next section.
Section 3 describes the production of the experimen-
tal chromatograms used to train and test the network
as well as the production of the random noise test
data. In Section 4 the method used to create the
inputs to the PNN from the peak tables generated
from the gas chromatograms is described. Also in
this section the iterative PNN application is de-
scribed that addresses the problems associated with
Aroclor mixture analysis that causes difficulties with
the simple PNN technique. The results of PNN, the
iterative PNN analyses, the linear regression analy-
sis, and the standard analysis techniques are pre-
sented in Section 5. The final section provides a
summary and conclusions.

2. Probabilistic neural networks

The PNN provides a general technique for solving
pattern classification problems. In mathematical
terms, an input vector, often referred to as a feature
vector, is used to determine a category. For example,
the spectral energy values from a sonar system can
be represented as a feature vector, and based on
these values a prediction can be made as to whether

a signal is from a ship, submarine, or another source.
Neural net classifiers are trained by being shown data
of known classifications. The PNN uses the training
data to develop distribution functions that are in turn
used to estimate the likelihood of a feature vector
being within the given categories.

Optionally, this can be combined with the a priori
probability of each category to determine the most
likely category for a given feature vector. If the
relative frequency of the categories is unknown, then
all categories can be assumed to be equally likely,
and the determination of a category is then solely
based on the closeness of the feature vector to the
distribution function of a category.

Specht developed the PNN, and has described it in
Refs. [14,15]. The PNN represents a neural im-
plementation of a Bayes classifier, where the class-
dependent probability density functions are approxi-
mated using a Parzen estimator. Since a Bayes
classifier provides an optimum approach to pattern
classification in terms of minimizing the expected
risk, and since Parzen estimators asymptotically
approach the true underlying class density functions
as the number of vectors increases, PNN provides a
very general and powerful classification paradigm
when there is adequate data of known classification.

Suppose a classification problem has k classes, and
suppose that the data on which decisions are based is
represented by an N-dimensional vector

v= (7,1, 1).
Let
F(0), £y s £i(D)

be the probability density functions (PDFs) of the
class populations and let

W, Wy, ..., W,

be the a priori probabilities that a vector will lie in a
given class. Then the Bayes decision rule compares
the &k values

@, f,(0), 0, £(0), ... 0 fi( V)

and chooses the class corresponding to the highest
value. Loss functions can also be factored into the
calculations, but the crux of the decision rule is to
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evaluate the multivariate class PDFs at the given
vector, weight them, and compare them.

This decision rule depends on knowing the class
PDFs. The Parzen estimator is a non-parametric
method of estimating PDFs which makes no assump-
tion about the nature of the distribution. The Parzen
estimator is built up from a set of smaller parametric
functions, typically Gaussian multivariate functions.
In essence, a small Gaussian curve is found for each
training vector, then the curves are added together
and smoothed.

The Parzen estimator used in PNN is of the form
[16]

T, 2
1.0 \W+h/iz 1 K - D7
) =( ) ~72{exp< : )} (1

2m0” k=1 207
where
D =llw-vH=\|Z@w-v)
i=1
V=W,V

is the jth vector in class k, T, is the number of
training records in class k, and o=0(T,) is a
smoothing parameter which must satisfy

lim o(T,) =0
T,—o=

and

lim (T,o(T,)) ==
o>

One way to satisfy this is to define

o= S
Tf/N
where E is a constant varying between 0.0 and 1.0
and S, the sigma scale, is optimized when o is
optimized in the training process. Typically, E is set
to 0.5, which is the value used in our networks. The
summation terms in Eq. (1) are referred to as Parzen
kernels, and each kernel is implemented as a princi-
ple element in the pattern layer of PNN. In the
standard pattern unit, D, is defined to be the Eucli-
dean distance between the input vector and the stored
center V.
The NeuralWork (Neuralware, Pittsburgh, PA,

USA) neural network software toolkit is used to
develop this PNN application. The PNN architecture
developed in this work has an input layer with nodes
for the retention times of two peaks and the ratio of
their peak areas (described below), a pattern layer
with clustering, a summation layer that sums the
Parzen kernels for each class, and an output layer
that calculates the normalized probabilities from the
values in the summation layer, as shown in Fig. 1.
The output layer of this PNN provides the average
value of the positive response of the connected
summation nodes over a series of vectors that are
applied to the input layer.

Ordinarily, the number of weights in the pattern
layer is equal to the number of training vectors. As a
result, if the number of training vectors is large, the
network could become both computational- and
memory-intensive. Clustering is a method for reduc-
ing the number of weights [16]. The clustering
procedure works in the following way. One starts
constructing the set of Gaussian kernels of Eq. (1) by
introducing training vectors to the network. After the
first few kernels have been set up, the kernel created
by an incoming training vector is compared to those
already established in the same class. The com-
parison is made by finding its distance to the closest
center of a previously created kernel in the same
class. If this distance is less than a radius of

tA 1B AreaA/AreaB
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Fig. 1. Neural network architecture. The number of nodes in the
pattern layer is optimized in the training process. Two peak
retention times and the ratio of the peak areas are applied to the
input node. Each output node provides the normalized probability
of each class in the training data.
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influence R, then instead of establishing a new kernel
in that class, the closest kernel already established is
used. Thus, the number of weights can effectively be
reduced by an appropriate choice of R. Optimization
of the o and R values is described below.

3. Chromatography data

Chromatograms of standard Aroclor mixtures
(Supelco, Bellefonte, PA, USA) were generated on a
Fisons Model 8000 gas chromatography instrument
(Fisons Instruments, Danvers, MA, USA) equipped
with a 20 mX0.25 mm LD. by 0.1 pm DB-1
column. The injector and detector temperatures were
280 and 350°C, respectively. The oven temperature
was 80°C for 1 min, increased 20°C/min to 220°C,
increased from 220°C by 12°C/min to 320°C, fol-
lowed by a constant temperature for an additional 3
min. Carrier gas flow-rate was 1.8 ml/min, with
make up gas flow-rate of 25 ml/min. The instrument
was controlled and data acquired with PE Nelson
Turbochrom software (Perkin-Elmer Nelson Sys-
tems, Cupertino, CA, USA). After the chromato-
grams were acquired, they were translated into the
Analytical Instrument Association (AIA) data inter-
change file format [17] and transferred to a Hewlett-
Packard workstation. Typical chromatograms of
Aroclors 1242, 1254, and 1260 are shown in Fig. 2.
Several sets of standard chromatograms (0.05, 0.10,
0.20, 0.40, and 0.80 pg/ml=0.005 pg/ml for each
Aroclor forming that Aroclor’s calibration set) and
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Fig. 2. Typical chromatograms of Aroclors 1242, 1254 and 1260.

mixture chromatograms were generated under these
conditions.

Random noise was used to test the resistance of
the data analysis method’s determinations when
processing noisy data. In order to incorporate the
effects of integrator distortions, the random data was
generated as chromatograms. Under the chromato-
graphic conditions described above, 62 characteristic
peak locations were identified at which PCBs in one
or more of the three Aroclor standards eluted. One
hundred chromatograms were created in which each
of the 62 peak locations had a 50% chance of being
populated with a peak. Gaussian peaks were gener-
ated at the chosen locations with an amplitude
randomly distributed between zero and the maximum
amplitude observed in the chromatograms of the
Aroclor standards at 0.80 wg/ml. The resulting AIA
data files were analyzed as unknown chromatograms.

4. Chromatogram processing
4.1. PNN software

The integrator in the Target-3 chromatography
data processing software (ThruPut Systems, Orlando,
FL, USA) is used to produce peak tables from the
time-series chromatogram. These peak tables are
processed into input data sets for the network in the
form of a set of vectors, which represented the
characteristic chromatographic profile of each Aro-
clor. A given vector consists of three values, the
retention time of two peaks and their peak area ratio.
Thus, a chromatogram becomes a set of vectors
which contains the chromatogram signature. The
process is illustrated as follows: Assume that the
peak table calculated from a chromatogram contains
four peaks and that these peaks are used to calculate
the input vectors for the network. Each peak is
characterized by its retention time (rtl, rt2, rt3, rt4)
and area (areal, area2, area3, area4). Also, for the
training data sets, the peaks are sorted in order of
decreasing area. Thus, peak 1 has the largest area
and peak 4 the lowest. In this simplified example,
Table 1 is created from these four peaks and each
row of the table is used as an input vector for the
PNN network. As shown in Table 1, six input
vectors are calculated from the four peaks. The
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Table 1

Example set of inputs to the three nodes in the PNN input layer created from four peaks with retention times rt1, ri2, rt3, rt4, and areas

areal, area2, area3, aread

Node 1 (retention time)

Node 2 (retention time)

Node 3 (area ratio)

rtl 2
rtl 3
rtl rt4
2 n3
2 rtd
3 rt4

area2/areal
area3/areal
aread/areal
area3/area2
aread/area
aread/areal

output nodes of the PNN network provide the
average value of the probability at the connected
summation node as each vector in the vector set for a
chromatogram is applied in turn to the input nodes.

The peaks chosen to form the characteristic vector
set for an Aroclor (on which the PNN is trained)
must be chosen carefully. A linearity criterion and an
orthogonality criterion were developed to select the
peaks used to form the vector sets for each Aroclor.
The linearity criterion introduces the requirement
that the area of the peak selected scale linearly with
the concentration of the Aroclor in the standard
sample from which the chromatogram is generated.
This linearity criterion requires that the area of the
peak in the chromatograms of the 0.10, 0.20, 0.40,
and 0.80 pg/ml standard samples are within 20% of
the appropriate multiplier of the area of the same
peak in the 0.05 jg/ml chromatogram. This criterion
ensures that the peaks selected arises from PCB
component(s) of the Aroclor mixture and do not
suffer from interference from adjacent peaks. A 30%
threshold in this linearity criterion is also used to
investigate the sensitivity of the PNN performance to
the peak selection process.

Because different Aroclors can contain the same
(or different but co-eluting) chlorinated biphenyl
species, a chromatogram of a sample with a mixture
of Aroclors has peaks whose areas depend on
components of each Aroclor. When trying to detect
the signature of each Aroclor in a mixture, this
interference of other Aroclors is the primary source
of errors. To minimize the effect of the overlap on
the PNN, the peaks selected to form each Aroclor’s
training vector set is also required to meet an
orthogonality requirement. This orthogonality criter-
ion requires that none of the peaks in the set chosen
for one Aroclor may be present at more than 20%

intensity (by area) in the chromatograms of other
Aroclor standard samples at the same concentration,

Software was developed to automate the process
of selecting appropriate peaks and creating the vector
sets. The 20% linearity criterion and the orthogonali-
ty criterion described above, when applied to the
chromatograms of pure Aroclor standards, yields 10
peaks for Aroclor 1242, 9 for Aroclor 1254, and 10
for Aroclor 1260 from our experimental calibration
data set. The pairwise comparisons in each Aroclor
peak set form 126 input training vectors (45 vectors
from 10 peaks and 36 vectors from 9 peaks) for each
chromatogram.

Unknown chromatograms are analyzed by cal-
culating the 126-vector set from peaks that match the
retention times of the 29 selected peaks. If no peak is
found in a 120 s window around the expected
retention time, the area of the peak is set to an
arbitrary small number. Chromatogram-to-chromato-
gram retention time reproducibility in the data sets
tested was better than 10 s.

The network is trained using the input vectors
created from the 15 standard chromatograms: five
chromatograms of samples spanning the concentra-
tion range for each of the three pure Aroclor
standards. In standard back-propagation neural net-
works, the number of hidden nodes are set in
advance and iteratively trained. By contrast, each
input training vector becomes a node in the PNN
pattern layer (shown in Fig. 1) unless it is similar
(within the radius of influence) to a preexisting node.
Training the PNN is simply a matter of finding the
optimum value of sigma and the radius of influence
[16].

The accuracy of the PNN network depends on the
accuracy of the value of sigma, determined as
described below. The accuracy of the value of sigma
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can depend on the number of input vectors, but it
also depends on how well the vectors separate the
different classes [14,15]. To find the optimum value
of sigma and the optimum radius of influence in this
application, initially we set the radius of influence to
zero and chose a sigma less than one. Sigma is
varied until the network recognized the Aroclors in
the 15 training chromatograms at the 100% level for
all three Aroclors and also accurately predicted the
absence of Aroclors. When the network probability
dropped below the 40% level, the Aroclor is deemed
absent (and the training error is zero). This 40%
threshold was identified empirically as a threshold
that provided a probability of 100% when the
chromatogram of a pure Aroclor was analyzed. After
a sigma is identified that met these criteria, the radius
of influence is optimized. Holding the sigma con-
stant, the radius of influence is increased until the
network no longer recognized the Aroclors at the
100% level and/or the probability for an absent
Aroclor exceeds the 40% level.

4.2. Standard chromatography data analysis

For the purposes of performance comparison,
several other data processing methods are used to
process the same Aroclor data. First, the data is
processed using the standard commercial chromato-
graphic data processing software in which calibration
curves relating peak area to concentration are created
using peaks in the individual Aroclor chromatograms
[1]. Samples are analyzed with this method by
calculating the unknown concentration from the
appropriate peak area/concentration calibration line
for each peak found that corresponds to a peak in the
calibration set for each Aroclor. The reported con-
centration for each Aroclor is determined to be the
average concentration calculated using each peak in
that Aroclor’s calibration set. Outliers are identified
using Chauvenet’s criterion and not used to calculate
the average or standard deviation that form the
reported result for each Aroclor [18]. The standard
deviation of the concentrations calculated using each
peak is used as a confidence level in the reported
answer. When the average concentration is larger
than three times the standard deviation from zero, the
Aroclor is identified in the sample.

4.3. Linear regression analysis

Linear regression is also used to process the test
data sets of Aroclors and Aroclor mixtures. The
linear regression analysis software was developed
using the Matlab (Mathworks, Nantik, MA, USA)
numerical computation system. The peaks selected as
representative of each Aroclor are used as the basis
vector that was regressed against a vector of match-
ing peaks in the unknown. Since the regression
fitting procedure does not require peaks that are
unique to each Aroclor, all the peaks that could be
attributed to any Aroclor are used in the basis vector.
In the three Aroclor calibration sets, 62 peaks are
attributable to one or more Aroclors. The three basis
vectors (one for each Aroclor) are found by singular
value decomposition of the normalized 62 peak
vectors in the calibration sets of five chromatograms
spanning the concentration range for pure samples of
each of the three Aroclors. An Aroclor is deemed to
be detected by linear regression analysis when the
calculated concentration is both greater than three
times the variance in the fit of that basis vector and
greater than the 0.05 pg/ml detection limit. The high
variance resulting in fits to the random noise inputs
are the primary discriminator against false positive
detections.

4.4. Iterative PNN

Even using peak sets selected with the ortho-
gonality criterion, the PNN has difficulty identifying
Aroclors that are minor components (a factor of five
or less in concentration compared to the Aroclor in
highest concentration) of Aroclor mixtures. This
difficulty arises from the inability to find completely
orthogonal peak sets for any Aroclor. Even with the
20% orthogonality criterion that ensures that no other
Aroclor has a major overlapping peak, when the
concentration difference is large, the Aroclor in the
largest concentration provides a large total contribu-
tions to some of the peaks in the sets of the other
Aroclors in the mixture. In addition, even when there
is not a direct overlapping interference, a large area
peak adjacent in retention time to a small area peak
interferes with the area determination of the small
peak [19]. In some severe cases, the integrator does
not resolve the small peak and so the area of the
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large peak, with the sum of the two areas, is used in
the input vector calculations. To address this prob-
lem, an iterative PNN method was developed. This
method subtracts the chromatograms of the Aroclors
positively identified by the PNN from the unknown
chromatogram and the resuiting difference chromato-
gram is reanalyzed by the PNN in order to identify
Aroclors present at lower concentration. Concen-
trations of the identified Aroclors are determined
using a simple method developed by Lea et al. [20],
although any method to calculate the concentration
can be used.

The first step in the iterative method is to analyze
the vector set calculated from an unknown chromato-
gram with the trained PNN. The result is a probabili-
ty for each Aroclor on which the network was
trained. If one of the output probabilities is greater
than 80%, the iterative method is executed. If more
than one output probability exceeds 80%, the Aro-
clor with the highest probability is used. In the
iterative method, the concentration of the Aroclor
with the highest probability is calculated with the
Lea method [20] using the same peak set chosen to
calculate the PNN input vectors. The calculated
concentration is used to scale the areas of the
Aroclor peaks in the peak table of the chromatogram
of the 0.20 pwg/ml standard, and then this peak set is
subtracted from the table of unknown peaks. Follow-
ing subtraction, the new peak set is used to calculate
new input vectors for the Aroclors that were not
identified in the first pass and these vectors are
applied to the trained PNN. If the new probability of
the remaining Aroclor or Aroclors (in the case of a
network trained for three Aroclors) increases to 70%
or more in the second PNN analysis, the quantization
and subtraction process is performed again to remove
the effect of that positively-identified Aroclor. Final-
ly (for a network trained to recognize three Aroclors)
the presence of the third Aroclor can be investigated
by the identification and subtraction process. The
final result is the highest probability found for each
Aroclor component, at any stage of the iteration.

Consider an example analysis of a sample created
with 0.05 pg/ml of Aroclor 1242, 0.20 pg/ml of
Aroclor 1254, and 0.80 pg/ml of Aroclor 1260 (all
nominal concentrations plus or minus 5%). The
chromatogram of this sample is processed into a
peak table and the 29 peaks in the peak sets for the

three Aroclor targets are found. Applying the 126
vector set calculated from the 29 peaks to the trained
PNN results in a output probability of 69% for
Aroclor 1242, 29% for Aroclor 1254, and 100% for
Aroclor 1260. The concentration of Aroclor 1260
was calculated to be 784*11 pg/ml using the 10
characteristic peaks in the peak set. Subtracting 3.92
times the area of each peak in the Aroclor 1260
chromatogram at 0.20 pg/ml that overlaps the 10
peaks in the Aroclor 1242 set and the nine peaks in
the Aroclor 1254 set results in a new 126 vector set
for the unknown chromatogram (reusing the 10
Aroclor 1260 peaks with the new values for the
Aroclor 1242 and 1250 peaks). When the PNN
operates on this input vector, the probability with
which Aroclor 1242 is identified increases to 100%
and the probability with which Aroclor 1254 is
identified increases to 44% (the probability for
Aroclor 1260 does not change). Subtracting the
estimated contribution of Aroclor 1242 (at 7020
pg/ml) from the nine peaks in the Aroclor 1254
peak set yields a third 126 vector set. Processing this
vector set with the PNN results in the final reported
identification probability for Aroclor 1254 of 84%.
The final result of the iterative analysis is that
Aroclor 1242 and 1260 are identified with a prob-
ability of 100% and Aroclor 1254 is identified with a
probability of 84%.

5. Results

In Table 2 we give the Aroclor concentrations of
the samples from which chromatographic data sets
were generated to test this method. The data sets are
numbered 1 through 33. There are 12 data sets of a
single Aroclor sample, five data sets with a mixture
of two Aroclors and 16 data sets with a mixture of
three Aroclors. The results of the PNN analysis of
the mixture data described in Table 2 are given in the
first three columns of Table 3. A neural net prob-
ability above 40% indicates that the Aroclor is
present. The (non-iterative) PNN predicts 88 correct-
ly with no false positives and 11 false negatives. A
faise positive occurs when the Aroclor is predicted to
be present when it is absent. A false negative is the
opposite, the Aroclor is predicted to be absent when
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Table 2
Concentration values for the Aroclor mixtures processed by the
gas chromatograph

DataSet Aroclor 1242 Aroclor 1254 Aroclor 1260
1 0.05' 0.05' 0.05'
2 0.10' 0.10' 0.10'
3 0.20' 0.20' 0.20'
4 0.40' 0.40 0.40'
5 0.80' 0.80 0.80"
6 0 o’ 0.80
7 0 0.80 0
8 0.80 o’ 0
9 0.80" 0.80 0.05'

10 0 0.05' 0.10'

11 0.05 0 0.10

12 0.20' 0.80 0.80"'

13 0.20' 0.05' 0.80

14 0.10' 0.80 0.40'

15 0.40' 0.80 o’

16 0.80 0.10' 0.20'

17 0.80 0.05"2 0.80'

18 0.05' 0.80 o

19 0.05" 0.20' 0.80

20 0 0.40 0.05'

21 0.80' 0.20' 0.20'

22 0.20 0 0

23 0 0.20 0

24 0 0 0.20

25 0.20 0 0

26 0 0.20 0

27 0 0 0.20

28 0.20 0 0

29 ] 0.20 0

30 0 0 0.20

31 0.20 0.05' 0.40

32 0.20 0.05' 0.40

33 0.20 0.05' 0.40

Concentrations are given in pg/ml.

! False negative determinations by standard analysis.

? False negative determinations by linear regression analysis.
’ False positive determinations by linear regression analysis.

it is present. The false negative results are indicated
in Table 3.

As discussed, false negative PNN results occurred
when the sample contains mixtures of Aroclors with
large differences in concentration, such as in data set
17. Using this iterative approach to identifying minor
mixture components results in the successful identifi-
cation of all components in the data set described in
Table 2, eliminating the false negative determina-
tions. The results of the iterative PNN method appear
in the last three columns of Table 3. The success of

the iterative PNN relies on the insensitivity of the
PNN to minor variations in the input ratios. This
insensitivity is critical since additional distortions of
the area ratios are introduced as a result of subtract-
ing the interfering chromatograms based on the
rough concentration estimations provided by the Lea
method.

Standard chromatography data processing of the
data described in Table 2 (using Target-3) yields 61
correct results and 38 false negative results. The data
sets where the standard analysis yielded false nega-
tive results are indicated in Table 2. The high rate of
false negative determinations arises from the inabili-
ty to find unique peaks in the Aroclor chromato-
grams with which to build the area/concentration
relationships. When more than one Aroclor contri-
butes a PCB component to a peak used to identify
and quantify any Aroclor, the peak area/concen-
tration relationship determined for that peak from the
single-Aroclor calibration sets is not valid. The
resulting variance in the concentration calculated
using each peak increases the standard deviation of
the average answer to the point that a negative
identification is made. In this standard manual analy-
sis procedure, peaks are chosen that exhibited
baseline resolution and the linear behavior over the
concentration range in the calibration sets. When the
standard analysis is performed with the peaks chosen
for their orthogonality between the set of three
Aroclors, the analysis of the data described in Table
2 results in 19 false negative results, however, the
quantization performance, not reported in this work,
degrades substantially.

Processing the data described in Table 2 with the
linear regression technique yields 93 correct results,
four false positive results, and two false negative
results. The data sets on which the erroneous results
occur are indicated in Table 2. The false positive
results occur when the basis vectors describing one
Aroclor has a statistically significant fit to the peak
pattern when that Aroclor is not present. These false
positive results occur when at least one Aroclor
component of the mixture is present at the 0.80
pg/ml highest concentrations. At these high con-
centrations, even PCBs present in minor amounts
generate peaks in the chromatogram that exceed the
integrator area cutoff and so appear in the peak table.
Since these PCBs do not produce peaks that are
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Table 3
Results of PNN neural net analysis

Data set Single PNN analysis Iterative PNN analysis
Aroclor 1242 Aroclor 1254 Aroclor 1260 Aroclor 1242 Aroclor 1254 Aroclor 1260
1 95 45 83 98 82 96
2 98 45 86 100 80 100
3 95 45 88 100 71 96
4 95 48 86 100 80 93
5 93 48 86 98 78 96
6 12 21 100 24 16 100
7 5 100 29 31 100 2
8 100 33 7 100 11 20
9 93 100 31" 100 100 9]
10 7 38’ 95 24 73 100
11 100 26 100 100 26 100
12 57 43 86 96 76 89
13 100 26" 100 100 56 100
14 33’ 55 74 96 89 91
15 76 100 29 100 100 2
16 100 55 91 100 80 96
17 100 33’ 100 100 69 100
18 24! 100 29 100 100 2
19 60 29" 100 100 84 100
20 5 79 33’ 31 91 82
21 100 57 81 100 76 98
22 100 29 19 100 11 20
23 7 100 24 24 100 13
24 7 21 100 13 16 100
25 100 31 12 100 6 16
26 7 100 26 13 100 20
27 5 21 100 11 13 100
28 100 29 12 100 9 16
29 7 100 21 13 100 6
30 7 21 100 13 16 100
31 100 26’ 100 100 67 100
32 100 29’ 100 100 62 100
33 100 29! 100 100 87 100

Neural net results are given as percent probabilities.
' False negative determinations by PNN analysis.

major features of the chromatograms of the Aroclor
at all concentrations, they are not included in the
basis vector calculated for that Aroclor and so are fit
using other basis vectors of other Aroclors in the
linear regression fitting.

In order to test the sensitivity of the PNN method
to the requirement that peaks be linear in the
concentration range, a second set of vectors was
created using the same orthogonality criterion, but
relaxing the linearity criterion to 30%. With this
relaxed criterion, sets of 17 peaks for Aroclor 1242,
9 for Aroclor 1254, and 13 for Aroclor 1260 were

selected. From these peak sets, 250 vectors were
calculated for each chromatogram. The PNN trained
with 250 vectors calculated for each training chro-
matogram gave 89 correct predictions with two false
positives and eight false negatives. The false nega-
tives occurred for Aroclor 1254 in data sets 13, 17,
19, 31, 32, and 33 in Table 2, and occurred for
Aroclor 1260 in data sets 9 and 20, the false positive
determinations occurred on Aroclor 1242 in data set
6 and Aroclor 1254 in data set 8 of Table 2. The
iterative application of this PNN did not result in any
false negative or false positive results, demonstrating
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that peak linearity is not critical to the PNN per-
formance.

To be useful for environmental screening analyses
and automated analyses, data processing techniques
must also recognize the absence of Aroclors in the
sample. In order to test the resistance of these data
processing methods to false positive determinations,
the 100 randomly-generated artificial chromatograms
described above were analyzed. Standard data pro-
cessing with Target-3 yielded 21 false positive
determinations out of the 300 possible determina-
tions. Analyzing the chromatograms with the linear
regression technique described above yielded 187
false positive determinations. The PNN technique
and the iterative PNN method both gave no false
positive results. These results are consistent with our
experience in the analyzing of non-Aroclor-contami-
nated soil and oil samples in our laboratory.

5.1. Summary and conclusions

The method described in this paper is one of many
possible approaches to the Aroclor classification
problem. The PNN network was developed because
it satisfied the constraints for typical use in en-
vironmental testing laboratories. Most important, it
can be trained with a small data set (for example, the
standard calibration data set normally collected when
building a conventional analysis method) and it is
resistant to false positive classifications. The method
can learn nonlinearities in the data as is evidenced by
the results of Section 5. It can be used on en-
vironmental samples containing one or multiple
numbers of Aroclors. Finally, because the PNN
result is a probability of identification, the result is
naturally interpreted as a target identification. The
format of the output as an identification probability
allows a new result category, the tentative positive.
The PNN technique is being incorporated into a
system for automated analysis. In this system, the
third tentative positive result category is defined to
be a probability between 40% and 70%. Tentative
positive results will indicate that the result needs
further validation before a final determination can be
made.

We have shown that probabilistic neural networks
are an effective classifier of unknown samples
containing no Aroclors, a pure Aroclor and Aroclor

mixtures. However, in samples containing a mixture
of Aroclors at widely different concentration levels,
all three methods described in this paper (the PNN
network, the Linear regression method, and the
standard method) have difficulty classifying the
sample correctly. Furthermore, the linear regression
and standard analysis techniques exhibit a high rate
of false positive results on random noise. The
iterative application of the PNN described overcomes
this difficulty and is able to classify all unknown
experimental and artificial data sets presented in this
study without error.

Further studies will investigate techniques for
identifying Aroclors in the presence of weathering
(volatilization loss) and degradation. The approach to
weathered data will be somewhat different from that
presented here. Algorithms will be developed to
create data sets that have the characteristics of
weathered data and will be tested on neural networks
trained on weathered data. Weathered data is current-
ly being produced and studied at the University of
Southern Indiana for this study.
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